

Line Integrals & vector fields

Given a vector field \mathbf{F} , \mathbf{F} is called conservative if $\mathbf{F} = \nabla f$, for some function f .

$$\downarrow$$

$$\langle P, Q \rangle = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$$

How to check: look at $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$.

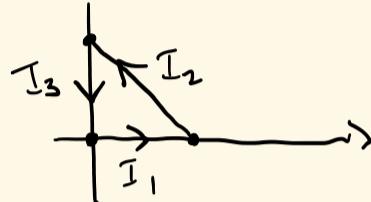
If $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, then $\mathbf{F} = \langle P, Q \rangle$ is conservative.

Otherwise, it is not conservative.

Ex. Evaluate $\int_C y^3 dx - x^3 dy$, where C is the triangle

with vertices $(0,0), (0,1), (1,0)$ oriented counter-clockwise.

Picture:



use that $\int_C = \int_{I_1} + \int_{I_2} + \int_{I_3}$.

First, parametrize the curves!

$I_1: y=0, 0 \leq x \leq 1$. So, $I_1 = \langle t, 0 \rangle$, for $0 \leq t \leq 1$.

$I_2: y=1-x, 0 \leq x \leq 1$. So, $I_2 = \langle t, 1-t \rangle$, for $0 \leq t \leq 1$

at $t=0, I_2$ is $\langle 0, 1 \rangle$
 $t=1, I_2$ is $\langle 1, 0 \rangle$

So, $I_2 = \langle 1-t, t \rangle$, for $0 \leq t \leq 1$.

$I_3: x=0, 0 \leq y \leq 1$, So, $I_3 = \langle 0, 1-t \rangle$, for $0 \leq t \leq 1$.

Next, $\int_C y^3 dx - x^3 dy = \int_{I_1 + I_2 + I_3}$

$$I_1: \int_0^1 y^3 dx - x^3 dy, \quad I_1 \Rightarrow \langle x(t), y(t) \rangle = \langle t, 0 \rangle$$

$$\Rightarrow \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle = \langle 1, 0 \rangle$$

$$\Rightarrow \int_0^1 0 \cdot 1 dt - t^3 \cdot 0 dt = \boxed{0}.$$

$$I_2: \int_0^1 y^3 dx - x^3 dy \quad I_2 \Rightarrow \langle x(t), y(t) \rangle = \langle 1-t, t \rangle$$

$$\Rightarrow \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle = \langle -1, 1 \rangle$$

$$\Rightarrow \int_0^1 t^3(-1) dt - (1-t)^3 dt = -\left(\frac{1}{4} + \frac{1}{4}\right)$$

$$= -\frac{1}{2}$$

$$I_3: \int_0^1 y^3 dx - x^3 dy \quad I_3 \Rightarrow \langle x(t), y(t) \rangle = \langle 0, 1-t \rangle$$

$$\Rightarrow \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle = \langle 0, -1 \rangle$$

$$\Rightarrow \int_0^1 (1-t)^3 \cdot 0 dt - 0 = \boxed{0}$$

Thus, $\int_C y^3 dx - x^3 dy = \boxed{-\frac{1}{2}}$

- More difficult parametrization
- Why does $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Rightarrow$ conservative?

Keep in mind:

1. Parametrize your curve!
2. Convert everything to the variable t .
3. Integrate!